INFORMATION TECHNOLOGIES IN THE SERVICE OF CLINICAL BIOCHEMIST

Informacijske tehnologije u službi medicinskog biokemičara

Mario Štefanović

Klinički bolnički centar "Sestre milosrdnice" Klinički zavod za kemiju

Hrvatsko društvo za medicinsku biokemiju i laboratorijsku medicinu

11th Congress of the Croatian Society of Medical Biochemistry and Laboratory Medicine, Vodice, October 9 - 12, 2024

- 1. Introduction to IT and AI in Clinical Chemistry Labs
- 2. Key Advantages and Applications of Al
- 3. Historical Development and Future Trends
- 4. Challenges and Ethical Considerations
- 5. Practical Use Cases and Impact on Productivity

IT IN CLINICAL CHEMISTRY

WHAT?

Information technology (IT)

▶ lab data management using computer technology

WHY?

Why follow IT technology if we aren't IT professionals?

- ▶ rapid IT development impacting clinical chemistry
- ▶ keeping pace with time
- ► understanding and implementing new technologies
- ▶ boosting productivity

FOCUS?

- ▶improving lab operations
- ▶ practical IT applications and optimization
- ► scientific development

HISTORICAL PERSPECTIVE: EVOLUTION OF IT & AUTOMATION

Manual processes

Basic IT systems

Automation

• Error-prone, laborious, inefficient

- Early databases (e.g., DBASE), DOS environment
- Early tools (Excel, Word) for basic data management
- IT systems standardizing lab processes
- Reduces human intervention, improving accuracy
- Real-time data exchange via LIMS/LIS

LABORATORY AUTOMATION: OVERVIEW

Advantages & Challenges

Advantages

- Faster processing,
- consistent results,
- reduced error risk
- Frees up human resources

Challenges

- High costs,
- need for validation
- staff training

Automation Levels

Non-automated

Manual work, low productivity (small labs)

Partially Automated

Integration, reduced staff (medium/big labs)

Fully Automated (TLA)

 Integrated analyzers & pre/post-analytical modules (big modern labs)

Laboratory Automation

Benefits

- ► Increased efficiency,
- ▶ reduced human error

Challenges

- ► Implementation costs
- ▶ specialized training

Phases of Automation

Pre-analytical

- Sample registration,
- barcode usage,
- transport (e.g., pneumatic tubes)

Analytical

- Automated analyzers,
- LIMS integration,
- reflex testing

Post-analytical

- Result validation,
- autovalidation, QC, data reporting

Implementation Strategy

Start Parameters

• Samples, staff, speed, budget, space

Optimization

- Use LIMS, automate sample handling,
- QC monitoring

TECH AND IT INNOVATIONS IN CLINICAL LABORATORY

1. Automation & Workflow Optimization

Pneumatic Tube System

▶ sample delivery using tube systems: hospital departments -> lab

Automated Sample Handling

- ▶ robotic systems: sorting, labeling, tracking reduce human error
- ▶ real-time monitoring of sample quality and storage conditions

LIS/LIMS (Laboratory Information Systems):

- ▶ Manages lab data, tracks samples, automates workflows
- ▶ quality standards and regulatory compliance
- ▶ QMS (Quality Management Systems): quality and improvement

3. Data Processing & Analysis

Cloud Storage, Bioinformatics and Analysis

▶ cloud systems: storing and analyzing large data, results and analysis

AI & Machine Learning

- ▶ large datasets, pattern analysis, predictive modeling
- ▶ analyzing unstructured data (photos, PDFs...)

Statistical Software (R, Python):

▶ complex data analysis and research interpretation

Visualization Tools (Tableau, Power BI):

► data visualization

2. Advanced Diagnostic Tools

Wearable Health Technology Integration

- ▶ data from glucose monitors, fitness trackers: into lab analyses
- ▶ data aids in personalized medical treatments

Point-of-Care Testing (POCT)

► Immediate results, faster diagnosis

Advanced Sensors

▶ precise measurement (temperature, chemical concentrations)

4. Other: Training Technologies, Analytical Tools

Augmented Reality (AR)

▶ interactive virtual training: new equipment, protocols, new skills

High-Resolution Microscopy, Spectroscopy

▶ detailed molecular and atomic level analysis

EVOLUTION OF ALIN LABORATORIES: FROM AUTOMATION TO GENERATIVE AL

ARTIFICIAL INTELLIGENCE - AI

▶ Machine simulation of human intelligence, automates analysis, pattern recognition

Evolution of AI

1950s 👺

Artificial Intelligence (AI) Human-like Intelligence **Initial Concepts**

% 1980s

Machine Learning Learning from Data Historical Data

Complex Problem-Solving predictions/classifications pattern recognition

neural networks: image, speech recognition more data complexity

∰ 2010s

Deep Learning

Brain-like Functions

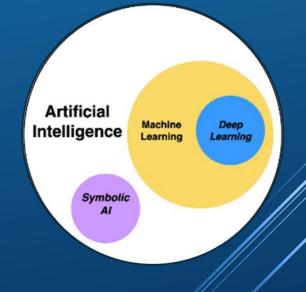
complex predictions

creates new original content content generation creative tasks (art, music, text)

Generative AI (Gen AI)

Foundation Models

Original Content Creation

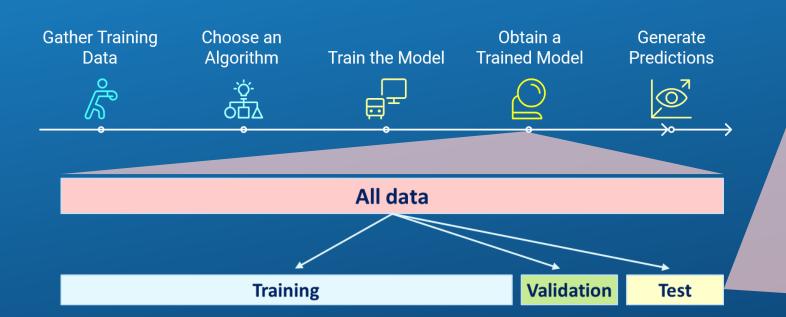


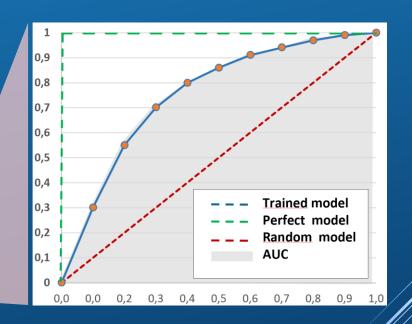
large datasets

https://community.aws/content/2drbbXokwrlXivItJ8Ze Ck3gT5F/introduction-to-artificial-intelligence-andmachine-learning

LEADING AI MODELS: CHATGPT AND THE RISE OF AI TOOLS

ChatGPT - OpenAl


- General Pre-Trained Transformer
- ▶ public since 30.11.2022
- running LLM in background
- fastest adoption in history (100M/first month)



LEADING AI MODELS AND THEIR PRACTICAL APPLICATIONS

Category	Model	Description	
Transformers and LLMs	GPT-3 & GPT-4 (OpenAI)		Language generation, chatbots
	BERT (Google)	G BERT	Text understanding in Google Search
Generative AI Models	DALL-E (OpenAI)		Image generation from text
	Midjourney	Midjourney	Creative artwork generation
Specialized AI Models	AlphaFold (DeepMind)	Google DeepMind	Protein structure prediction
	Stable Diffusion	stability ai	Image generation
Implementation Examples	Voice Assistants	Siri Google Assistant alexa	Voice control
	ChatGPT, Copilot, Gemini, Llama, Claude, Grok Llama 3 **Claude	e / Grok	Generative AI

MACHINE LEARNING WORKFLOW AND MODEL EVALUATION

- 1. Collect data to build the model
- 2. Select the appropriate algorithm
- 3. Use training to adjust model's parameters
- 4. The model is trained after processing the data
- 5. The trained model makes predictions
- 6. AUC comparison of model performance

HEALTHCARE DATA PREPROCESSING FOR DEEP LEARNING

Preprocessing medical data for DL

Numerical:

▶ Blood reports

Categorical:

► Medical test results

Text:

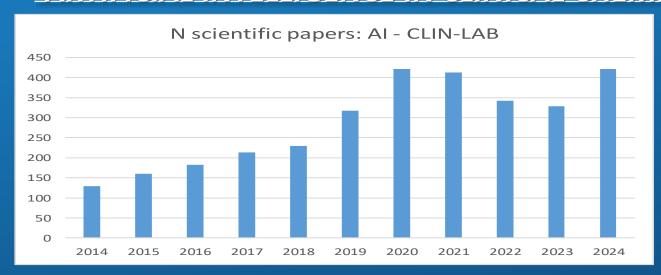
► Medical reports

Image:

► X-ray

Video:

► CT, MRI, Ultrasound output


Speech:

► Voice typing

Signals:

► ECG, EMG signals

ARTIFICIAL INTELLIGENCE IN CLINICAL CHEMISTRY LABORATORY

Pubmed search

"Artificial Intelligence" OR

"Machine Learning" AND

"Medical Biochemistry" OR

"Clinical Chemistry" OR

"Laboratory Medicine" AND

publication date from 2019 to 2024

Category	Negative Aspects	Positive Aspects	Key Conclusions	No. of Articles	References
Al Applications	Data accuracy issues	Improved diagnosis and efficiency	Al enhances accuracy, but needs further validation	. 13	Hou H et al. 2024, Spies N et al. 2024
	Lack of transparency in algorithms	Optimized lab processes	Human-Al collaboration is essential	15	Dabla P et al. 2024, Pighi L et al. 2024
Ethical and	Data privacy and security concerns	Al enhances transparency when regulated	Ethical guidelines and regulations are needed	_	Plebani M et al. 2024, Meyer J et al. 2024
Regulatory	Responsibility for Al errors Reduces medical errors when used properly Privacy and bias must be addressed before broad use		4	Plebani M et al. 2024, Meyer J et al. 2024	
Personalized Medicine	Ethical challenges in individualized treatment	Precision in diagnostics and tailored therapies	Al and digital tools boost personalized care		Padoan A et al. 2024, Flores E et al. 2024
	Data quality and integration issues	Improved outcomes through Al-based predictions	Validation and regulation needed for wider adoption	3	Lou X et al. 2024
Quality Control	High implementation costs	Reduced errors in lab results	Al improves quality control but requires monitoring	2	Lorde N et al. 2024, Lang T et al. 2024
	Limited interoperability between systems Faster identification of preanalytical and analytical errors Ongoing monitoring needed for sustained effectiveness		2	Lorde N et al. 2024, Lang T et al. 2024	
Educational Use of Al	Risk of AI overuse for learning	Al supports medical education	Al complements but does not replace human experts	2	Ibrahim R et al. 2023, Ahmed S et al. 2024

ARTIFICIAL INTELLIGENCE IN CLINICAL CHEMISTRY LABORATORY

Gin Chem Lab Med 2023; 61(7): 1158–1166

EFLM Paper

Janne Cadamuro, Federico Cabitza Zeljko Debeljak, Sander De Bruyne, Glynis Frans, Salomon Martin Perez, Habib Ozdemir, Alexander Tolios, Anna Carobene and Andrea Padoan*

Potentials and pitfalls of ChatGPT and natural-language artificial intelligence models for the understanding of laboratory medicine test results. An assessment by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group on Artificial Intelligence (WG-AI)

Cadamuro et al. 2023

- ▶ ChatGPT
- can recognize abnormal laboratory test values
- ► provides superficial interpretations
- not suitable for comprehensive medical diagnostics

Conclusion

- Al can help in lab diagnostics
 - but struggles with complex contexts
- Excels in basic education
 - but lacks higher cognitive abilities
- Ethical use and regulation is crucial!
- Much more research is needed!

Advances in Medical Education and Practice

Dovepres

en access to scientific and medical research

Human versus Artificial Intelligence: ChatGPT-4
Outperforming Bing, Bard, ChatGPT-3.5 and Humans
in Clinical Chemistry Multiple-Choice Questions

Malik Sallam 10 1-3, Khaled Al-Salahat 1,3, Huda Eid3, Jan Egger4, Behrus Puladi5

Sallam et al. 2024

- ▶ ChatGPT-4
- outperformed human students and other AI models
- multiple-choice questions in clinical chemistry
- ▶ poor higher cognitive functions (analysis and application)

DE GRUYTER

A Open Access Full Text Article

Clin Chem Lab Med 2023; 61(7): 1131-1132

Editorial

Mario Plebani*

ChatGPT: Angel or Demond? Critical thinking is still needed

Plebani 2023

- ► ChatGPT in scientific publications
- doesn't meet authorship criteria –no responsibility
- ► limits in interpreting lab results without clinical context
- need for ethical standards and critical thinking

LAB PRODUCTIVITY TOOLS: DATA ANALYSIS AND REPORTING

Which tool to use for different data analysis tasks?

Use MySQL, MSSQL, or PostgreSQL

For statistics, data reports, LIS and LIMS data analysis, and research scientific work

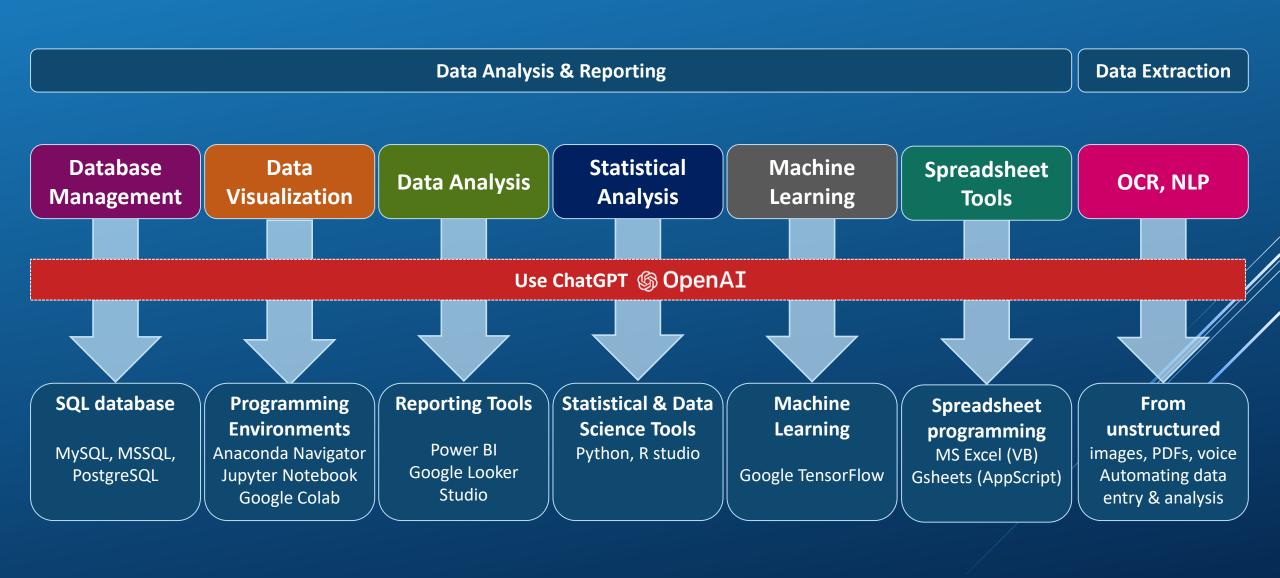
For inventory, tests, staff, and equipment management

Use Excel, Google (Looker), Gsheets, Jupyter, MS Access, MS Power BI, Python, or R

For data mining and ML tools

Data mining and ML tools

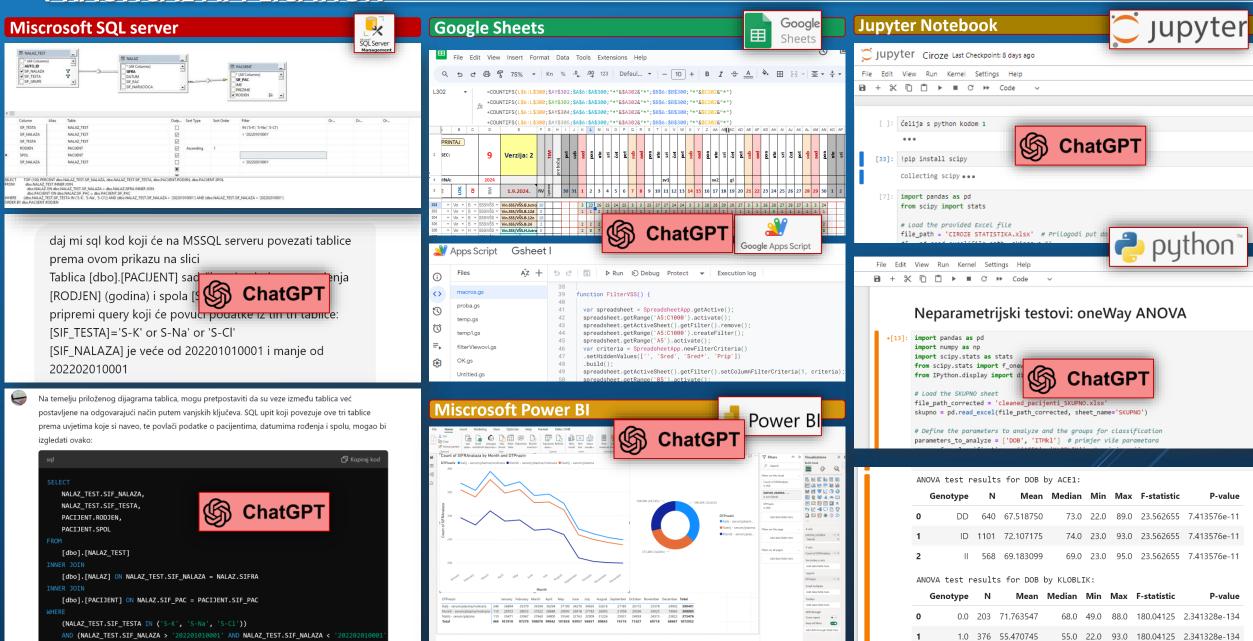
- ► MySQL, MSSQL
- ► MS Access
- ▶ Python: Jupyter, Colab


Statistics and data tools

- **▶** Python
- ▶ R studio

Reports and dashboards

- ► Google (Looker), MS Power BI
- ► Excel, Gsheets
- ► Power Point, GSlides


ENHANCING LAB PRODUCTIVITY: WHICH AI/IT TOOLS?

OTHER AI/IT TOOLS

Tool	Durnoso	Face of Use	Drodustivity Ronofits	Evamples
Tool	Purpose	Ease of Use	Productivity Benefits	Examples
SQL Database	Data storage and retrieval	Pay/Free, install required	Efficient queries, research data	Storing lab data, inventory
MS Access	Database management	Install required	Relational database, simple interface	Sample tracking, data queries, programming application
Excel, Sheets (AppScript)	Data entry, analysis, automation	Excel: Paid	Programing repetitive tasks	Reagent calculation, data entry, advanced formula
Power Bl	Data visualization, reports	Desktop, free version Sheets: Free, web-based	Fast analysis, better decisions	QC metrics, patient trends
Odoo	Business management	Web-based, free and paid versions	Streamline business processes	Patient management, finance
Jupyter notebook, Colab	Python-based data analysis	Jupyter/Colab: Web Anaconda: Install	Advanced analysis without coding	Clinical data analysis, trend graphs
Looker Studio	Online data dashboards	Web-based, free	Interactive insights	Lab performance dashboards
R Studio	Statistical analysis	Open-source, install	Advanced statistical analysis	QC statistical testing
TensorFlow	Machine learning models	Open-source, local or web	Predictive modeling	Image analysis, patient prediction
Weka	Machine learning	Open-source, install	Simple ML classification models	Anomaly detection, clustering
Snipe-IT	Inventory management	Web-based, open-source	Track assets and resources	Lab equipment tracking
Bioconductor	Genomic data analysis	Open-source, requires R	Genomic data processing	Gene expression analysis
Galaxy	Bioinformatics, sequencing	Web-based, open-source	Large-scale biological data analysis	General research data analysis
ChatGPT	Coding assistance, text generation	Web-based, easy to use	Generate scripts, troubleshoot	Generate Python scripts

PRACTICAL APPLICATION

PRACTICAL APPLICATION: CHATGPT

Working with Files (Images, PDFs, DOCs)

Convert image/PDF text into an editable

Create table from image/text

Consolidate multiple documents or data into a summary

Shorten long to concise version

Working with Paragraph Text

Create table with columns A, B, C from paragraph/organize by category

Shorten long paragraphs/keep key points

Reorganize paragraphs/text, improve structure and flow Working with Long Articles or Documents

Extract bullet points from long document

Summarize the content

Extract key conclusions from long document

Excel/Google Sheets Formulas

> Find a value in Sheet2 and, if found, write the result in cell A2 of Sheet1

> Extract First Name and Last Name from merged *Name and Surname* cells

Code Creation

Write Python code descriptive statistics + graphs from *PODACI.xlsx*

Write AppsScript code to create chart from data in the range Sheet1!B2

Write
Python/AppsScript
code to generate links
for articles list

Problems and Solutions

Explain what this Windows 11 error message means and suggest solutions

KEY TAKEAWAYS & FUTURE OUTLOOK

AI Enhances Lab Efficiency

Automates data, optimizes tasks, improves decision-making, increased efficiency, accuracy

Quality Assurance

Al ensures reliability and quality in labs

Key Applications

Data automation, task optimization, large dataset management, advanced reporting, custom insights, inventory performance

Challenges

Al limitations, ethics, bias, high adoption costs, trust-building

Data Security

Demands encryption, multi-factor authentication, GDPR compliance

THANK YOU!

LECTURE AVAILABLE AT: https://klinkemija.kbcsm.hr/predmet-laboratorijska-informatika/predavanja/